Tracking Repair Expenses for Tax Documentation

Tracking Repair Expenses for Tax Documentation

Project Scope Definition and Permitting Requirements for Foundation Repair

When it comes to managing a home, one of the less glamorous but crucial aspects is keeping track of repair expenses, especially for something as significant as foundation repairs. Documenting foundation repair costs is not just good practice for maintaining your homes value; its also essential for tax documentation purposes. Here's why and how you should go about it.


Firstly, foundation repairs can be a substantial investment. Those windows that suddenly won't close properly aren't rebelling against you but rather responding to the foundation shift tango sinking basement floor Bolingbrook United States. These costs can often be deducted from your taxes if they qualify as a home improvement that adds to the propertys value or extends its life. The IRS allows homeowners to add these expenses to the cost basis of their home, which can reduce capital gains tax when you sell the property. However, without proper documentation, these deductions can become difficult to claim.


To start, whenever you undertake foundation repair work, ensure you get detailed invoices from your contractor. These invoices should list out all services performed, materials used, labor costs, and any other fees associated with the project. Keep these documents in a safe place along with any warranties or guarantees that come with the repair work.


Next, create a file or digital folder specifically for this purpose. Label it clearly so you can find it easily during tax season or when needed for other financial reviews. In this file, include not only the invoices but also any correspondence related to the repairs - emails or letters discussing the scope of work or payment terms are valuable.


It's also wise to take before and after photos of the repair site. Visual evidence can support your claims if there's ever a dispute about what was done or if an audit requires more proof than just paper trails.


When preparing your taxes, refer back to these documents. You'll need to report these expenses on Schedule A (Itemized Deductions) under medical and dental expenses if the repairs were necessary due to health reasons related to your home environment or under improvements on Form 1040 when selling your home.


In summary, documenting foundation repair costs meticulously provides peace of mind and financial benefits. It ensures youre prepared for tax time and helps maintain an accurate history of your homes maintenance investments. Remember, good record-keeping today makes future financial dealings much smoother and potentially more profitable when it comes time to sell your property.

Categorizing expenses for tax purposes is a crucial aspect of managing finances, especially when it comes to tracking repair expenses for tax documentation. Whether youre a homeowner, a property manager, or running a business, understanding how to properly categorize these expenditures can significantly impact your tax obligations and potential deductions.


Repair expenses often fall under the umbrella of maintenance costs, which are generally deductible in the year they are incurred if they do not add to the value of the property or prolong its life. This is where the distinction between repairs and improvements becomes vital. For instance, fixing a leaky roof or replacing broken windows would typically be considered repairs. These are costs that restore the property to its previous condition without enhancing its value beyond what it was before the repair.


When documenting these expenses, its important to keep detailed records. This includes receipts, invoices, and any correspondence related to the repair work. Each expense should be categorized accurately; for example, under Repairs and Maintenance on your financial statements or tax return forms. This categorization helps in clearly distinguishing between what can be immediately deducted versus what might need to be capitalized and depreciated over time.


Moreover, having well-organized records aids in proving the legitimacy of your deductions should you face an audit from tax authorities. A simple yet effective approach is maintaining a dedicated file or digital folder for each years repair expenses, noting down who performed the work, when it was done, and how much it cost.


In summary, categorizing repair expenses for tax documentation involves understanding the nature of each expense, maintaining meticulous records, and correctly allocating these costs into appropriate categories on your tax filings. By doing so, you not only ensure compliance with tax laws but also maximize your potential savings through legitimate deductions. This practice not only streamlines your financial management but also provides peace of mind during tax season.

Material Procurement and Quality Control Procedures

When it comes to tracking repair expenses for tax documentation, one of the most crucial practices is keeping receipts and invoices for foundation work. Foundation repairs can be a significant investment, often necessary to maintain the structural integrity of a home or building. For homeowners and business owners alike, these expenses can offer valuable tax deductions, but only if they are properly documented.


First and foremost, whenever you engage a contractor to perform foundation work, ensure you receive a detailed invoice. This document should not only list the total cost but also break down the charges into labor, materials, and any additional fees. Its vital that this invoice is itemized because tax authorities require clear evidence of what was spent on capital improvements versus routine maintenance.


Alongside the invoice, keep all receipts from purchases related to the foundation repair. This includes receipts for any materials you might have bought yourself or any incidental costs like transportation or equipment rentals used during the project. These receipts serve as proof of expenditure when claiming deductions on your tax return. Remember, without these documents, your claims could be challenged or disallowed by the IRS or other tax agencies.


Its also wise to keep a record of communications with your contractor. Emails or notes from phone calls can clarify any discrepancies in billing or work performed, providing further substantiation for your expenses if needed during an audit.


Storing these documents safely is equally important. Digital copies are convenient; scan each receipt and invoice and store them in a cloud-based system for easy retrieval. However, physical copies should be kept in a secure file at home or your office since digital records can sometimes be questioned regarding their authenticity.


In summary, meticulous record-keeping of receipts and invoices for foundation work is not just good practice; its essential for leveraging tax benefits related to home repairs. By maintaining thorough documentation, you protect yourself against potential disputes with tax authorities while ensuring you maximize your deductions come tax season. This diligence not only aids in financial planning but also contributes to peace of mind knowing youre prepared for any scrutiny over your claimed expenses.

Material Procurement and Quality Control Procedures

Inspection and Testing Protocols During Foundation Repair

Okay, lets talk about claiming deductions for foundation repair expenses, and specifically how to keep track of everything for tax time. Its definitely not the most exciting topic, I know, but it can save you a chunk of change, and nobody wants to leave money on the table, right?


Think of your foundation repair like a little (or maybe not so little!) investment in your homes future. The IRS, generally speaking, doesnt let you deduct every home improvement expense right away. They usually consider these capital improvements, meaning they add value to your property and are recouped when you eventually sell. However, theres a crucial difference between an improvement and a repair.


A repair is usually aimed at restoring something to its original condition. If your foundation is cracking and needs to be stabilized to prevent further damage and restore it to its previous functional state, thats often considered a repair. Improvements, on the other hand, would be things like adding a new room to your house or completely rebuilding the foundation larger than it was before.


Now, for the tax deduction part, the key is in what caused the damage. You can typically deduct foundation repair costs if the damage was a result of a sudden event, like a natural disaster. Think earthquake, flood, or maybe even a particularly aggressive tree root that caused rapid deterioration. The cost to repair this damage might be deductible as a casualty loss.


But heres the really important part: documentation. You need to keep meticulous records. Im talking about everything. Get detailed invoices from your foundation repair company. These should clearly outline the work performed, the materials used, and the cost breakdown. Take before-and-after photos. Seriously. These are invaluable for demonstrating the extent of the damage and the effectiveness of the repair. Keep any reports from structural engineers or other professionals who assessed the damage.


If youre claiming a casualty loss due to a natural disaster, youll also need to document the event itself. Newspaper articles, weather reports, and insurance claims can all help support your case.


The IRS has specific rules and forms for claiming casualty losses. Form 4684 is the one to watch out for. Also, be aware of any limitations on casualty loss deductions. Theres usually an adjusted gross income (AGI) threshold involved, and you might only be able to deduct the amount exceeding a certain percentage of your AGI.


Finally, and this is crucial: when in doubt, consult a tax professional. Tax laws can be complex, and its easy to make mistakes. A qualified accountant or tax advisor can help you determine if your foundation repair expenses are deductible, ensure youre claiming them correctly, and navigate the sometimes-confusing world of IRS regulations. They can also help you understand if there are any state-specific deductions or credits you might be eligible for. Its an investment that can pay off handsomely in the long run, and itll give you peace of mind knowing youre doing everything right.

Drilling of deep piles of diameter 150 cm in bridge 423 near Ness Ziona, Israel

 

A deep foundation installation for a bridge in Napa, California, United States.
Pile driving operations in the Port of Tampa, Florida.

A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site. A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths.

Deep foundations of The Marina Torch, a skyscraper in Dubai

There are many reasons that a geotechnical engineer would recommend a deep foundation over a shallow foundation, such as for a skyscraper. Some of the common reasons are very large design loads, a poor soil at shallow depth, or site constraints like property lines. There are different terms used to describe different types of deep foundations including the pile (which is analogous to a pole), the pier (which is analogous to a column), drilled shafts, and caissons. Piles are generally driven into the ground in situ; other deep foundations are typically put in place using excavation and drilling. The naming conventions may vary between engineering disciplines and firms. Deep foundations can be made out of timber, steel, reinforced concrete or prestressed concrete.

Driven foundations

[edit]
Pipe piles being driven into the ground
Illustration of a hand-operated pile driver in Germany after 1480

Prefabricated piles are driven into the ground using a pile driver. Driven piles are constructed of wood, reinforced concrete, or steel. Wooden piles are made from the trunks of tall trees. Concrete piles are available in square, octagonal, and round cross-sections (like Franki piles). They are reinforced with rebar and are often prestressed. Steel piles are either pipe piles or some sort of beam section (like an H-pile). Historically, wood piles used splices to join multiple segments end-to-end when the driven depth required was too long for a single pile; today, splicing is common with steel piles, though concrete piles can be spliced with mechanical and other means. Driving piles, as opposed to drilling shafts, is advantageous because the soil displaced by driving the piles compresses the surrounding soil, causing greater friction against the sides of the piles, thus increasing their load-bearing capacity. Driven piles are also considered to be "tested" for weight-bearing ability because of their method of installation.[citation needed]

Pile foundation systems

[edit]

Foundations relying on driven piles often have groups of piles connected by a pile cap (a large concrete block into which the heads of the piles are embedded) to distribute loads that are greater than one pile can bear. Pile caps and isolated piles are typically connected with grade beams to tie the foundation elements together; lighter structural elements bear on the grade beams, while heavier elements bear directly on the pile cap.[citation needed]

Monopile foundation

[edit]

A monopile foundation utilizes a single, generally large-diameter, foundation structural element to support all the loads (weight, wind, etc.) of a large above-surface structure.

A large number of monopile foundations[1] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms in shallow-water subsea locations.[2] For example, the Horns Rev wind farm in the North Sea west of Denmark utilizes 80 large monopiles of 4 metres diameter sunk 25 meters deep into the seabed,[3] while the Lynn and Inner Dowsing Wind Farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.7-metre-diameter monopile foundation in ocean depths up to 18 metres.[4]

The typical construction process for a wind turbine subsea monopile foundation in sand includes driving a large hollow steel pile, of some 4 m in diameter with approximately 50mm thick walls, some 25 m deep into the seabed, through a 0.5 m layer of larger stone and gravel to minimize erosion around the pile. A transition piece (complete with pre-installed features such as boat-landing arrangement, cathodic protection, cable ducts for sub-marine cables, turbine tower flange, etc.) is attached to the driven pile, and the sand and water are removed from the centre of the pile and replaced with concrete. An additional layer of even larger stone, up to 0.5 m diameter, is applied to the surface of the seabed for longer-term erosion protection.[2]

Drilled piles

[edit]
A pile machine in Amsterdam.

Also called caissons, drilled shafts, drilled piers, cast-in-drilled-hole piles (CIDH piles) or cast-in-situ piles, a borehole is drilled into the ground, then concrete (and often some sort of reinforcing) is placed into the borehole to form the pile. Rotary boring techniques allow larger diameter piles than any other piling method and permit pile construction through particularly dense or hard strata. Construction methods depend on the geology of the site; in particular, whether boring is to be undertaken in 'dry' ground conditions or through water-saturated strata. Casing is often used when the sides of the borehole are likely to slough off before concrete is poured.

For end-bearing piles, drilling continues until the borehole has extended a sufficient depth (socketing) into a sufficiently strong layer. Depending on site geology, this can be a rock layer, or hardpan, or other dense, strong layers. Both the diameter of the pile and the depth of the pile are highly specific to the ground conditions, loading conditions, and nature of the project. Pile depths may vary substantially across a project if the bearing layer is not level. Drilled piles can be tested using a variety of methods to verify the pile integrity during installation.

Under-reamed piles

[edit]

Under-reamed piles have mechanically formed enlarged bases that are as much as 6 m in diameter.[citation needed] The form is that of an inverted cone and can only be formed in stable soils or rocks. The larger base diameter allows greater bearing capacity than a straight-shaft pile.

These piles are suited for expansive soils which are often subjected to seasonal moisture variations, or for loose or soft strata. They are used in normal ground condition also where economics are favorable. [5][full citation needed]

Under reamed piles foundation is used for the following soils:-

1. Under reamed piles are used in black cotton soil: This type of soil expands when it comes in contact with water and contraction occurs when water is removed. So that cracks appear in the construction done on such clay. An under reamed pile is used in the base to remove this defect.

2. Under reamed piles are used in low bearing capacity Outdated soil (filled soil)

3.Under reamed piles are used in sandy soil when water table is high.

4. Under reamed piles are used, Where lifting forces appear at the base of foundation.

Augercast pile

[edit]

An augercast pile, often known as a continuous flight augering (CFA) pile, is formed by drilling into the ground with a hollow stemmed continuous flight auger to the required depth or degree of resistance. No casing is required. A cement grout mix is then pumped down the stem of the auger. While the cement grout is pumped, the auger is slowly withdrawn, conveying the soil upward along the flights. A shaft of fluid cement grout is formed to ground level. Reinforcement can be installed. Recent innovations in addition to stringent quality control allows reinforcing cages to be placed up to the full length of a pile when required.[citation needed]

Augercast piles cause minimal disturbance and are often used for noise-sensitive and environmentally-sensitive sites. Augercast piles are not generally suited for use in contaminated soils, because of expensive waste disposal costs. In cases such as these, a displacement pile (like Olivier piles) may provide the cost efficiency of an augercast pile and minimal environmental impact. In ground containing obstructions or cobbles and boulders, augercast piles are less suitable as refusal above the design pile tip elevation may be encountered.[citation needed]

Small Sectional Flight Auger piling rigs can also be used for piled raft foundations. These produce the same type of pile as a Continuous Flight Auger rig but using smaller, more lightweight equipment. This piling method is fast, cost-effective and suitable for the majority of ground types.[5][6]

Pier and grade beam foundation

[edit]

In drilled pier foundations, the piers can be connected with grade beams on which the structure sits, sometimes with heavy column loads bearing directly on the piers. In some residential construction, the piers are extended above the ground level, and wood beams bearing on the piers are used to support the structure. This type of foundation results in a crawl space underneath the building in which wiring and duct work can be laid during construction or re-modelling.[7]

Speciality piles

[edit]

Jet-piles

[edit]

In jet piling high pressure water is used to set piles.[8] High pressure water cuts through soil with a high-pressure jet flow and allows the pile to be fitted.[9] One advantage of Jet Piling: the water jet lubricates the pile and softens the ground.[10] The method is in use in Norway.[11]

Micropiles

[edit]

Micropiles are small diameter, generally less than 300mm diameter, elements that are drilled and grouted in place.  They typically get their capacity from skin friction along the sides of the element, but can be end bearing in hard rock as well. Micropiles are usually heavily reinforced with steel comprising more than 40% of their cross section. They can be used as direct structural support or as ground reinforcement elements.  Due to their relatively high cost and the type of equipment used to install these elements, they are often used where access restrictions and or very difficult ground conditions (cobbles and boulders, construction debris, karst, environmental sensitivity) exists or to retrofit existing structures.  Occasionally, in difficult ground, they are used for new construction foundation elements. Typical applications include underpinning, bridge, transmission tower and slope stabilization projects.[6][12][13][14]

Tripod piles

[edit]

The use of a tripod rig to install piles is one of the more traditional ways of forming piles. Although unit costs are generally higher than with most other forms of piling,[citation needed] it has several advantages which have ensured its continued use through to the present day. The tripod system is easy and inexpensive to bring to site, making it ideal for jobs with a small number of piles.[clarification needed]

Sheet piles

[edit]
Sheet piles are used to restrain soft soil above the bedrock in this excavation

Sheet piling is a form of driven piling using thin interlocking sheets of steel to obtain a continuous barrier in the ground. The main application of sheet piles is in retaining walls and cofferdams erected to enable permanent works to proceed. Normally, vibrating hammer, t-crane and crawle drilling are used to establish sheet piles.[citation needed]

Soldier piles

[edit]
A soldier pile wall using reclaimed railway sleepers as lagging.

Soldier piles, also known as king piles or Berlin walls, are constructed of steel H sections spaced about 2 to 3 m apart and are driven or drilled prior to excavation. As the excavation proceeds, horizontal timber sheeting (lagging) is inserted behind the H pile flanges.

The horizontal earth pressures are concentrated on the soldier piles because of their relative rigidity compared to the lagging. Soil movement and subsidence is minimized by installing the lagging immediately after excavation to avoid soil loss.[citation needed] Lagging can be constructed by timber, precast concrete, shotcrete and steel plates depending on spacing of the soldier piles and the type of soils.

Soldier piles are most suitable in conditions where well constructed walls will not result in subsidence such as over-consolidated clays, soils above the water table if they have some cohesion, and free draining soils which can be effectively dewatered, like sands.[citation needed]

Unsuitable soils include soft clays and weak running soils that allow large movements such as loose sands. It is also not possible to extend the wall beyond the bottom of the excavation, and dewatering is often required.[citation needed]

Screw piles

[edit]

Screw piles, also called helical piers and screw foundations, have been used as foundations since the mid 19th century in screw-pile lighthouses.[citation needed] Screw piles are galvanized iron pipe with helical fins that are turned into the ground by machines to the required depth. The screw distributes the load to the soil and is sized accordingly.

Suction piles

[edit]

Suction piles are used underwater to secure floating platforms. Tubular piles are driven into the seabed (or more commonly dropped a few metres into a soft seabed) and then a pump sucks water out at the top of the tubular, pulling the pile further down.

The proportions of the pile (diameter to height) are dependent upon the soil type. Sand is difficult to penetrate but provides good holding capacity, so the height may be as short as half the diameter. Clays and muds are easy to penetrate but provide poor holding capacity, so the height may be as much as eight times the diameter. The open nature of gravel means that water would flow through the ground during installation, causing 'piping' flow (where water boils up through weaker paths through the soil). Therefore, suction piles cannot be used in gravel seabeds.[citation needed]

Adfreeze piles

[edit]
Adfreeze piles supporting a building in Utqiaġvik, Alaska

In high latitudes where the ground is continuously frozen, adfreeze piles are used as the primary structural foundation method.

Adfreeze piles derive their strength from the bond of the frozen ground around them to the surface of the pile.[citation needed]

Adfreeze pile foundations are particularly sensitive in conditions which cause the permafrost to melt. If a building is constructed improperly then it can melt the ground below, resulting in a failure of the foundation system.[citation needed]

Vibrated stone columns

[edit]

Vibrated stone columns are a ground improvement technique where columns of coarse aggregate are placed in soils with poor drainage or bearing capacity to improve the soils.[citation needed]

Hospital piles

[edit]

Specific to marine structures, hospital piles (also known as gallow piles) are built to provide temporary support to marine structure components during refurbishment works. For example, when removing a river pontoon, the brow will be attached to hospital pile to support it. They are normal piles, usually with a chain or hook attachment.[citation needed]

Piled walls

[edit]
Sheet piling, by a bridge, was used to block a canal in New Orleans after Hurricane Katrina damaged it.

Piled walls can be drivene or bored. They provide special advantages where available working space dictates and open cut excavation not feasible. Both methods offer technically effective and offer a cost efficient temporary or permanent means of retaining the sides of bulk excavations even in water bearing strata. When used in permanent works, these walls can be designed to resist vertical loads in addition lateral load from retaining soil. Construction of both methods is the same as for foundation bearing piles. Contiguous walls are constructed with small gaps between adjacent piles. The spacing of the piles can be varied to provide suitable bending stiffness.

Secant piled walls

[edit]

Secant pile walls are constructed such that space is left between alternate 'female' piles for the subsequent construction of 'male' piles.[clarification needed] Construction of 'male' piles involves boring through the concrete in the 'female' piles hole in order to key 'male' piles between. The male pile is the one where steel reinforcement cages are installed, though in some cases the female piles are also reinforced.[citation needed]

Secant piled walls can either be true hard/hard, hard/intermediate (firm), or hard/soft, depending on design requirements. Hard refers to structural concrete and firm or soft is usually a weaker grout mix containing bentonite.[citation needed] All types of wall can be constructed as free standing cantilevers, or may be propped if space and sub-structure design permit. Where party wall agreements allow, ground anchors can be used as tie backs.

Slurry walls

[edit]

A slurry wall is a barrier built under ground using a mix of bentonite and water to prevent the flow of groundwater. A trench that would collapse due to the hydraulic pressure in the surrounding soil does not collapse as the slurry balances the hydraulic pressure.

Deep mixing/mass stabilization techniques

[edit]

These are essentially variations of in situ reinforcements in the form of piles (as mentioned above), blocks or larger volumes.

Cement, lime/quick lime, flyash, sludge and/or other binders (sometimes called stabilizer) are mixed into the soil to increase bearing capacity. The result is not as solid as concrete, but should be seen as an improvement of the bearing capacity of the original soil.

The technique is most often applied on clays or organic soils like peat. The mixing can be carried out by pumping the binder into the soil whilst mixing it with a device normally mounted on an excavator or by excavating the masses, mixing them separately with the binders and refilling them in the desired area. The technique can also be used on lightly contaminated masses as a means of binding contaminants, as opposed to excavating them and transporting to landfill or processing.

Materials

[edit]

Timber

[edit]

As the name implies, timber piles are made of wood.

Historically, timber has been a plentiful, locally available resource in many areas. Today, timber piles are still more affordable than concrete or steel. Compared to other types of piles (steel or concrete), and depending on the source/type of timber, timber piles may not be suitable for heavier loads.

A main consideration regarding timber piles is that they should be protected from rotting above groundwater level. Timber will last for a long time below the groundwater level. For timber to rot, two elements are needed: water and oxygen. Below the groundwater level, dissolved oxygen is lacking even though there is ample water. Hence, timber tends to last for a long time below the groundwater level. An example is Venice, which has had timber pilings since its beginning; even most of the oldest piles are still in use. In 1648, the Royal Palace of Amsterdam was constructed on 13,659 timber piles that still survive today since they were below groundwater level. Timber that is to be used above the water table can be protected from decay and insects by numerous forms of wood preservation using pressure treatment (alkaline copper quaternary (ACQ), chromated copper arsenate (CCA), creosote, etc.).

Splicing timber piles is still quite common and is the easiest of all the piling materials to splice. The normal method for splicing is by driving the leader pile first, driving a steel tube (normally 60–100 cm long, with an internal diameter no smaller than the minimum toe diameter) half its length onto the end of the leader pile. The follower pile is then simply slotted into the other end of the tube and driving continues. The steel tube is simply there to ensure that the two pieces follow each other during driving. If uplift capacity is required, the splice can incorporate bolts, coach screws, spikes or the like to give it the necessary capacity.

Iron

[edit]

Cast iron may be used for piling. These may be ductile.[citation needed]

Steel

[edit]
Cutaway illustration. Deep inclined (battered) pipe piles support a precast segmented skyway where upper soil layers are weak muds.

Pipe piles are a type of steel driven pile foundation and are a good candidate for inclined (battered) piles.

Pipe piles can be driven either open end or closed end. When driven open end, soil is allowed to enter the bottom of the pipe or tube. If an empty pipe is required, a jet of water or an auger can be used to remove the soil inside following driving. Closed end pipe piles are constructed by covering the bottom of the pile with a steel plate or cast steel shoe.

In some cases, pipe piles are filled with concrete to provide additional moment capacity or corrosion resistance. In the United Kingdom, this is generally not done in order to reduce the cost.[citation needed] In these cases corrosion protection is provided by allowing for a sacrificial thickness of steel or by adopting a higher grade of steel. If a concrete filled pipe pile is corroded, most of the load carrying capacity of the pile will remain intact due to the concrete, while it will be lost in an empty pipe pile. The structural capacity of pipe piles is primarily calculated based on steel strength and concrete strength (if filled). An allowance is made for corrosion depending on the site conditions and local building codes. Steel pipe piles can either be new steel manufactured specifically for the piling industry or reclaimed steel tubular casing previously used for other purposes such as oil and gas exploration.

H-Piles are structural beams that are driven in the ground for deep foundation application. They can be easily cut off or joined by welding or mechanical drive-fit splicers. If the pile is driven into a soil with low pH value, then there is a risk of corrosion, coal-tar epoxy or cathodic protection can be applied to slow or eliminate the corrosion process. It is common to allow for an amount of corrosion in design by simply over dimensioning the cross-sectional area of the steel pile. In this way, the corrosion process can be prolonged up to 50 years.[citation needed]

Prestressed concrete piles

[edit]

Concrete piles are typically made with steel reinforcing and prestressing tendons to obtain the tensile strength required, to survive handling and driving, and to provide sufficient bending resistance.

Long piles can be difficult to handle and transport. Pile joints can be used to join two or more short piles to form one long pile. Pile joints can be used with both precast and prestressed concrete piles.

Composite piles

[edit]

A "composite pile" is a pile made of steel and concrete members that are fastened together, end to end, to form a single pile. It is a combination of different materials or different shaped materials such as pipe and H-beams or steel and concrete.

'Pile jackets' encasing old concrete piles in a saltwater environment to prevent corrosion and consequential weakening of the piles when cracks allow saltwater to contact the internal steel reinforcement rods

Construction machinery for driving piles into the ground

[edit]

Construction machinery used to drive piles into the ground:[15]

  • Pile driver is a device for placing piles in their designed position.
  • Diesel pile hammer is a device for hammering piles into the ground.
  • Hydraulic hammer is removable working equipment of hydraulic excavators, hydroficated machines (stationary rock breakers, loaders, manipulators, pile driving hammers) used for processing strong materials (rock, soil, metal) or pile driving elements by impact of falling parts dispersed by high-pressure fluid.
  • Vibratory pile driver is a machine for driving piles into sandy and clay soils.
  • Press-in pile driver is a machine for sinking piles into the ground by means of static force transmission.[16]
  • Universal drilling machine.

Construction machinery for replacement piles

[edit]

Construction machinery used to construct replacement piles:[15]

  • Sectional Flight Auger or Continuous Flight Auger
  • Reverse circulation drilling
  • Ring bit concentric drilling

See also

[edit]
  • Eurocode EN 1997
  • International Society for Micropiles
  • Post in ground construction also called earthfast or posthole construction; a historic method of building wooden structures.
  • Stilt house, also known as a lake house; an ancient, historic house type built on pilings.
  • Shallow foundations
  • Pile bridge
  • Larssen sheet piling

Notes

[edit]
  1. ^ Offshore Wind Turbine Foundations, 2009-09-09, accessed 2010-04-12.
  2. ^ a b Constructing a turbine foundation Archived 21 May 2011 at the Wayback Machine Horns Rev project, Elsam monopile foundation construction process, accessed 2010-04-12]
  3. ^ Horns Revolution Archived 14 July 2011 at the Wayback Machine, Modern Power Systems, 2002-10-05, accessed 2010-04-14.
  4. ^ "Lynn and Inner Dowsing description". Archived from the original on 26 July 2011. Retrieved 23 July 2010.
  5. ^ a b Handbook on Under-reamed and bored compaction pile foundation, Central building research institute Roorkee, Prepared by Devendra Sharma, M. P. Jain, Chandra Prakash
  6. ^ a b Siel, Barry D.; Anderson, Scott A. "Implementation of Micropiles by the Federal Highway Administration" (PDF). Federal Highway Administration (US). cite journal: Cite journal requires |journal= (help)
  7. ^ Marshall, Brain (April 2000). "How House Construction Works". How Stuff Works. HowStuffWorks, Inc. Retrieved 4 April 2013.
  8. ^ "jet-pile". Merriam-Webster. Retrieved 2 August 2020.
  9. ^ Guan, Chengli; Yang, Yuyou (21 February 2019). "Field Study on the Waterstop of the Rodin Jet Pile". Applied Sciences. doi:10.3390/app9081709. Retrieved 2 August 2020.
  10. ^ "Press-in with Water Jetting". Giken.com. Giken Ltd. Retrieved 2 August 2020.
  11. ^ "City Lade, Trondheim". Jetgrunn.no. Jetgrunn AS. Retrieved 2 August 2020.
  12. ^ Omer, Joshua R. (2010). "A Numerical Model for Load Transfer and Settlement of Bored Cast In-Situ Piles". Proceedings of the 35th Annual Conference on Deep Foundations. Archived from the original on 14 April 2021. Retrieved 20 July 2011.
  13. ^ "International Society for Micropiles". Retrieved 2 February 2007.
  14. ^ "GeoTechTools". Geo-Institute. Retrieved 15 April 2022.
  15. ^ a b McNeil, Ian (1990). An Encyclopaedia of the history of technolology. Routledge. ISBN 9780415147927. Retrieved 20 July 2022 – via Internet Archive.
  16. ^ "General description of the press-in pile driving unit". Concrete Pumping Melbourne. 13 October 2021. Archived from the original on 25 December 2022. Retrieved 20 July 2022.

References

[edit]
  • Italiantrivelle Foundation Industry Archived 25 June 2014 at the Wayback Machine The Deep Foundation web portal Italiantrivelle is the number one source of information regarding the Foundation Industry. (Link needs to be removed or updated, links to inappropriate content)
  • Fleming, W. G. K. et al., 1985, Piling Engineering, Surrey University Press; Hunt, R. E., Geotechnical Engineering Analysis and Evaluation, 1986, McGraw-Hill.
  • Coduto, Donald P. Foundation Design: Principles and Practices 2nd ed., Prentice-Hall Inc., 2001.
  • NAVFAC DM 7.02 Foundations and Earth Structures U.S. Naval Facilities Engineering Command, 1986.
  • Rajapakse, Ruwan., Pile Design and Construction Guide, 2003
  • Tomlinson, P.J., Pile Design and Construction Practice, 1984
  • Stabilization of Organic Soils Archived 22 February 2012 at the Wayback Machine
  • Sheet piling handbook, 2010
[edit]
  • Deep Foundations Institute

 

Shallow foundation construction example

A shallow foundation is a type of building foundation that transfers structural load to the Earth very near to the surface, rather than to a subsurface layer or a range of depths, as does a deep foundation. Customarily, a shallow foundation is considered as such when the width of the entire foundation is greater than its depth.[1] In comparison to deep foundations, shallow foundations are less technical, thus making them more economical and the most widely used for relatively light structures.

Types

[edit]

Footings are always wider than the members that they support. Structural loads from a column or wall are usually greater than 1,000 kPa, while the soil's bearing capacity is commonly less than that (typically less than 400 kPa). By possessing a larger bearing area, the foundation distributes the pressure to the soil, decreasing the bearing pressure to within allowable values.[2] A structure is not limited to one footing. Multiple types of footings may be used in a construction project.

Wall footing

[edit]

Also called strip footing, a wall footing is a continuous strip that supports structural and non-structural load-bearing walls. Found directly under the wall, Its width is commonly 2-3 times wider than the wall above it.[3]

Detail Section of a strip footing and its wall.

Isolated footing

[edit]

Also called single-column footing, an isolated footing is a square, rectangular, or circular slab that supports the structural members individually. Generally, each column is set on an individual footing to transmit and distribute the load of the structure to the soil underneath. Sometimes, an isolated footing can be sloped or stepped at the base to spread greater loads. This type of footing is used when the structural load is relatively low, columns are widely spaced, and the soil's bearing capacity is adequate at a shallow depth.

Combined footing

[edit]

When more than one column shares the same footing, it is called a combined footing. A combined footing is typically utilized when the spacing of the columns is too restricted such that if isolated footing were used, they would overlap one another. Also, when property lines make isolated footings eccentrically loaded, combined footings are preferred.

When the load among the columns is equal, the combined footing may be rectangular. Conversely, when the load among the columns is unequal, the combined footing should be trapezoidal.

Strap footing

[edit]

A strap footing connects individual columns with the use of a strap beam. The general purpose of a strap footing is alike to those of a combined footing, where the spacing is possibly limited and/or the columns are adjacent to the property lines.

Mat foundation with its concrete undergoing curing.

Mat foundation

[edit]

Also called raft foundation, a mat foundation is a single continuous slab that covers the entirety of the base of a building. Mat foundations support all the loads of the structure and transmit them to the ground evenly. Soil conditions may prevent other footings from being used. Since this type of foundation distributes the load coming from the building uniformly over a considerably large area, it is favored when individual footings are unfeasible due to the low bearing capacity of the soil.

Diagrams of the types of shallow foundations.

Slab-on-grade foundation

[edit]
Pouring a slab-on-grade foundation

Slab-on-grade or floating slab foundations are a structural engineering practice whereby the reinforced concrete slab that is to serve as the foundation for the structure is formed from formwork set into the ground. The concrete is then poured into the formwork, leaving no space between the ground and the structure. This type of construction is most often seen in warmer climates, where ground freezing and thawing is less of a concern and where there is no need for heat ducting underneath the floor. Frost Protected Shallow Foundations (or FPSF) which are used in areas of potential frost heave, are a form of slab-on-grade foundation.[4]

Remodeling or extending such a structure may be more difficult. Over the long term, ground settling (or subsidence) may be a problem, as a slab foundation cannot be readily jacked up to compensate; proper soil compaction prior to pour can minimize this. The slab can be decoupled from ground temperatures by insulation, with the concrete poured directly over insulation (for example, extruded polystyrene foam panels), or heating provisions (such as hydronic heating) can be built into the slab.

Slab-on-grade foundations should not be used in areas with expansive clay soil. While elevated structural slabs actually perform better on expansive clays, it is generally accepted by the engineering community that slab-on-grade foundations offer the greatest cost-to-performance ratio for tract homes. Elevated structural slabs are generally only found on custom homes or homes with basements.

Copper piping, commonly used to carry natural gas and water, reacts with concrete over a long period, slowly degrading until the pipe fails. This can lead to what is commonly referred to as slab leaks. These occur when pipes begin to leak from within the slab. Signs of a slab leak range from unexplained dampened carpet spots, to drops in water pressure and wet discoloration on exterior foundation walls.[5] Copper pipes must be lagged (that is, insulated) or run through a conduit or plumbed into the building above the slab. Electrical conduits through the slab must be water-tight, as they extend below ground level and can potentially expose wiring to groundwater.

See also

[edit]

References

[edit]
  1. ^ Akhter, Shahin. "Shallow foundation – Definition, Types, Uses and Diagrams". Pro Civil Engineer. Retrieved July 31, 2021.
  2. ^ Gillesania, Diego Inocencio T. (2004). Fundamentals of reinforced concrete design (2nd ed.). [Cebu, Cirty, Philippines]. p. 259. ISBN 971-8614-26-5. OCLC 1015901733.cite book: CS1 maint: location missing publisher (link)
  3. ^ Mahdi, Sheikh. "8 Most Important Types of Foundation". civiltoday.com. Retrieved July 31, 2021.
  4. ^ "Slab-on-Grade Foundation Detail & Insulation, Building Guide".
  5. ^ "Slab Leak Repair McKinney, Frisco, and Allen Tx - Hackler Plumbing". Hacklerplumbingmckinney.com. 2013-11-08. Retrieved 2018-08-20.
[edit]

About Cook County

Driving Directions in Cook County


Driving Directions From 42.088525008778, -88.079435634324 to
Driving Directions From 42.021124436568, -88.109125186152 to
Driving Directions From 42.017845685371, -88.11591807218 to
Driving Directions From 42.084324223519, -88.137710099374 to
Driving Directions From 42.10843482977, -88.114090738222 to
Driving Directions From 42.086153671225, -88.19640031169 to
Driving Directions From 42.051159627372, -88.202951526236 to
Driving Directions From 42.008657936699, -88.152725208607 to
Driving Directions From 42.007242948498, -88.153060682778 to
Driving Directions From 42.073881347839, -88.179224443136 to